上海和记怡情娱乐官网自动化技术有限公司版权所有 All rights reserver
友情链接:
半导体纳米气体传感器是利用半导体纳米陶瓷与气体接触时电阻的变化来检测低浓度气体。半导体纳米陶瓷表面吸附气体分子时,根据半导体的类型和气体分子的种类不同,材料的电阻率也随之发生不同的变化。半导体纳米材料表面吸附气体时,如果外表原子的电子亲合能大于表面逸出功,原子将从半导体表面得到电子,形成负离子吸附。相反,形成正离子吸附。N型半导体发生负离子吸附时,其能带的变化如图1所示。
2、湿敏传感器
湿度传感器的工作原理是半导体纳米材料制成的陶瓷电阻随湿度的变化关系决定的。纳米固体具有明显的湿敏特性。对外界环境湿气十分敏感。环境湿度迅速引起其表面或界面离子价态和电子运输的变化。例如,纳米晶体电导随水分变化显著,响应时间短,2min即可达到平衡。湿度传感器的湿敏机制有电子导电和质子导电等。例如纳米陶瓷的导电机制是离子导电,质子是主要的电荷载体,其导电性由于吸附水而增高。
3、压敏传感器
氧化锌系纳米传感器,由于其具有均匀的晶粒尺寸,它不但适用于低电压器件,而且更适用于高电压电力站,它能量吸收容量高,在大电流时非线性好,响应时间短,电学性能极好,且寿命长。纳米氧化锌压敏传感器高度的非线性电压-电流关系,主要由绝缘晶界层决定。两个ZnO分解,形成填隙Zni原子,同时产生氧空位,如下式所示:
Zni及经一次和二次电离,就形成为载流子的N型半导体了。
4、纳米超薄膜化学传感器
利用2nm的金粒子做核,以巯基烷基酸做有机连接剂,连接剂通过氢键互相作用把纳米粒子组装成多孔纳米超薄膜(图2)。这种纳米超薄膜可以涂覆到电极上用来响应电活化的金属离子。纳米粒子间氢键连接形成的通道大小可以通过pH值以及电极电压进行调整,用做电化学传感器,对特定的金属离子进行响应、监测。
5、新型超敏感纳米传感器
新型超敏感传感器能够通过光线的反射来检测跟分子一样小的物质,这样就使得传感器的可检测范围进一步扩大,从可爆炸物到癌症分子均可被新型传感器所检测[3]。此新型传感器所使用的芯片上布满了金属立柱,这些金属立柱能够用来增强从物体反射回来的光信号。新型传感器的传感能力是现有传感器能力的l0亿倍。这种新设备被称为“磁盘耦合柱点天线阵列”或D2PA,生产制备简单且成本低廉。
四、纳米生物传感器
随着生命科学研究的不断发展.人们对生物体的研究也由器官、组织达到了细胞、亚细胞层次,微型化、动态、多参数、实时无损检测,已成为生物传感器发展的趋势[4]。纳米生物技术是国际生物技术领域的前沿和热点问题,在医药卫生,食品生产和监控,环境监测等领域有着广泛的应用和明确的产业化前景。目前人们已研制出了尺寸在微米、纳米量级的生物传感器和生物图像传感器。下面是几个纳米生物传感器的例子。
1、 纳米微悬梁生物传感器
IBM公司和瑞典Basel大学的研究人员开发了一种新型的纳米微悬梁生物传感器,利用DNA分子的双螺旋机构,作为分子特异性识别能力的模型。器件的核心是硅悬梁天平阵列,长500μm,宽100μm,厚度为1μm。由于生物分子的结合,从而引起悬梁臂的弯曲,通过激光反射技术,该器件能够检测到10~20nm的弯曲。在悬梁天平阵列表面固定具有不同识别性的分子,构成阵列式生物传感器可以同时检测多项指标(如图3所示)。
2、模拟离子通道开关的生物传感器
澳大利亚AMBRI有限公司悉尼实验室的专家,研制出的一种手持式纳米生物传感器(图4),可以探测空气中的病原体,比如说炭疽热病菌等,非常适合生物武器的现场检测。这种传感器通过模拟细胞膜,形成具有开关功能的离子通道,当敏感膜与样本中的受体结合,引起离子通道的关闭,从而影响导电性能。其用途非常广泛,一个拇指指甲大小的传感器能在几分钟内,帮助医生从病人的体液中确认病因。另外,这种传感器可以用来控制环境污染等。
3、光纤纳米免疫传感器
免疫传感器是指用于检测抗原抗体反应的传感器而光纤纳米免疫传感器是在其基础上将敏感部制成纳米级,既保留了光学免疫传感器的诸多优点,又使之能适用于单个细胞的测量。
Dinh等人成功地研制出一种用于检测BPT的光纤纳米免疫传感器[5],传感器头部的生物探针上结合了特异性单克隆抗体,通过抗原抗体特异性结合,能够检测单个细胞内的生物化学物质。BPT纳米传感器制好后,在专用于单细胞操作的显微操纵仪/显微注射器上进行细胞穿刺及检测实验(见图5)。
Dinh和他的同事还将一根纳米传感器探针携带一束激光刺入一个活细胞,从而探测多种细胞内物质,监控活细胞的蛋白和其它所感兴趣的生物化学物质(图6)。
五、纳米传感器技术在生活中的应用
1、采用纳米腔传感器探测病毒
纽约Rochester大学研究者发明了一种纳米传感器可检测出千万亿分之一克的生物学物质或病毒[6]。将来这种传感器可能用于检测流感、SARS、禽流感或其它病毒。传感器由微小的六边形腔构成,每个腔直径240nm,用光电子技术在一个非常薄的硅板上雕刻而成,一块板整个面积为40mm,当光束直接通过晶体,光谱中特殊的部分与晶体作用并通过。但当有一粒子被其中一个纳米腔捕获,传输的光谱将发生轻微改变,然后探测器就可感应到被改变的光谱。当在某一大小范围内,病毒在某一纳米腔被捕获,传送的光谱将不同于没有病毒粒子存在的光谱。
2、利用纳米传感器快速检测癌症
美国耶鲁大学的科研人员研发出了一种可快速检测癌症的纳米传感器[7]。这种仪器可以从病人的血液中找到前列腺癌、乳腺癌和其他癌症的生物标记,与传统检测方法相比,其检测结果更加准确,而且成本不高。其操作方便,医生只需从病人手指上取一点血,便可很快完成检测,整个过程只需20分钟。由于血液的成分复杂,为找到能监测癌症的生物标记,研究人员使用了一个类似过滤器的装置,使这种纳米传感器能直接从血液中过滤出所需检测的物质,其精度相当于从一个巨大的游泳池中找到一颗盐粒。虽然这种仪器目前还不能马上投入实际应用,但在进一步对其完善的基础上可以制造出更简便快捷的癌症诊断仪器。
3、可自行发电的纳米传感器
美国化学学会的科学家们发明了一种能实现自行发电的新型传感器。它能够实现30英尺距离无电池参与下的运行,这意味着它能够利用环境自行发电,能源来源包括太阳能、声波、震动、化学、气流和热能,无线数据的传输都由设备自行供电,用一个电容器来实现电力存储。这种传感器不仅仅用于医疗,还可以用于空中摄像机、可穿戴电子产品等,套用威廉吉布森的话,未来已经来临。
纳米技术是21世纪三大技术之一,它必将对人们的生产和生活带来巨大的进步和飞跃,而在纳米技术中,对社会生活和生产方式将产生最深刻而广泛影响的纳米器件的研究水平和应用程度标志着一个国家纳米科技的总体水平,而纳米传感器恰恰就是纳米器件研究中的一个极其重要的领域。因此,新型纳米传感器的研究将更上一层楼,纳米材料在传感器领域的应用也会层出不穷。
上海和记怡情娱乐官网自动化技术有限公司版权所有 All rights reserver
友情链接: